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Abstract

A mathematical model of quasi-isostatic pressing (QIP - pressing in a granular pressure-
transmitting medium) is developed. Stress-strain state and shape change inherent in QIP
are analyzed. The regularities of change in the macroscopic aspect ratio and shape
distortion are determined as functions of pressure transmitting medium and body
porosities, as well as constitutive properties. QIP has an intennediate position between free
upsetting, pressing in rigid die and isostatic pressing from the point of view of the stress-
strain state and shape distortion. The experimental results on QIPing foam cylindrical
bodies agree well with theoretical predictions.

1. Introduction

Uniaxial pressing with a pressure-transmitting medium (i.e. PTM) (Fig. 1) has been
attracting attention [1]. Known as the Ceracon [2] or Quasi-Isostatic Pressing (i.e. QIP)
- process, it has been utilized industrially in manufacturing [3] and more recently, in
combination with self-propagating high-temperature synthesis (i.e. SHS) [4-7]. When
combined with SHS, QIP offers a relatively simple processing method by which hundreds
of industrially-useful materials can be produced and shaped into engineering components.
A granular pressure-transmitting medium (alumina or alumina with graphite powder) not
only serves as a load transmitter, but also a natural thermal insulator which prevents
substantial heat loss and minimizes temperature gradients during SHS.

In light of the current development of near-net-shape technologies, the analysis of both
shape and volume changes under QIP is of considerable importance. The factors which
influence the shape and volume change of a porous body include the initial porosities both
the PTM and porous body, and their respective constitutive properties. The investigation
of the effect of these factors on shape change during QIP is the objective of the present
work.



2. Theorctical analysis of the shape change under quasi-isostatic pressing
Mechanical response of a nonlinear-viscous porous body can be described [8] by a
rheological (constitutive) relationship connecting components of stress tensor o; and strain

rate tensor €; :
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where A and n - are matenial creep parameters; ¢ and  are the shear and bulk normalized
viscosity module, which depend on porosity 6 (for example, following [10-12],

_2(1-0y
o=(1-6), vy ( 5 ) ); 8; is a Kronecker symbol (6; =1 if i=j and ;=0 if
i#]j); & is the first invariant of the strain rate tensor, i.c. sum of tensor diagonal
components: € = €, + €,, +€,;. -
For this analysis, the constitutive behavior of the PTM is assumed to be elastic, while that
of the porous body is assumed to be nonlinearly-viscous. It is also assumed that the
stresses are unifonn within both the PTM and porous body. For simplicity, a cylindrical
geomelry is assumed, and cylindrical coordinate system is used throughout this paper
(Fig.1).
In cylindrical coordinates, the volume-change rate € and the shape-change rate y are given
by:
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where é,,, €_,and 6 are the axial strain rate, radial strain rate, and porosity, respectively.
For a cylindrical specimen, the axial and radial strain-rates are given by:
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where H and R are the instantaneous cylinder height and radius. Equation (3) gives the
following relationship for the shape-change rate:
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This expression will be used to derive relationships between the height and radius of the
cylindrical specimen and porosity.
It is further assumed that the presence of the porous cylindrical body within the PTM
provides a negligible effect on ils state-of-stress as a result of the applied axial load. This is
equivalent to imagining the porous cylmdncal body embedded in an mﬁmtely-cxtended
PTM with a far-field applied stress o; at its boundary. The PTM itself is assumed to be
under the condition of uniaxial load with lateral confinement (i.e. pressing in a rigid die).
Therefore, the sample can be considered under conditions of biaxial loading (Fig. l)

For the PTM, the axial and radial stresses are related to the axnal strain g, by Hook’s law
and are given by:
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Fig. 1. Scheme of loading and the Boundary conditions for the finite-clement formulation of the problem of QIP
where vand E are the Poisson’s ratio and Young’s modulus for the PTM. These depend

upon PTM porosity 8, and are given by :
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where E, is the Young’s modulus of the granular material making up the PTM. The ratio

of the axial stress to the radial stress is therefore given by:
c, l-v 2
2 = = = k 10
c v 2-36, (10)

The following expression for the axnal/radxal strain-rate ratio is valid:
k(2-36)-2

2(2 - 30) - k(4 - 36)
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If k= (which means that 0 = 8,), then é, =0, and we have the conditions of

pressing in a rigid die.

If k=1 (i.e., if 6, = 0 which means that PTM is an incompressible material), ¢, =€

we have the condmons of isostatic pressing.

If k & o (i.e,, if 8, =2/3) which approximately corresponds to the density of packed
30 - 2

and
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and we have the conditions of free up-

ll’

setting.
Combmmg Equations (2), (4), and (11) gnves the following expression for the axial strain-
rate in terms of the rate-of-change of porosit
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Comblmng Equations (2), (11), and (12) gives the followmg expression for the radial
strain-rate in terms of the rate-of-change of porosily:
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The shape change rate can be represented as follows :
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Subtracting Equation (13) from (12), and integrating gives the following expression for the

aspect ratio H/R: .
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In deriving Equa(ion (15), it was assumed that 6, is constant. Equation (15) indicates that
the change in the aspect ratio H/R does not dcpend upon the constitutive behavior of either
the PTM or densified body, but depends only on the PTM porosity and the body’s initial
density and dimensional paramelers.
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Fig.2. Shrinkage anisotropy as a function of specimen purosity under QIP

In Fig. 2, the curves are shown corresponding to the relationships between the radial-axial
strain rate ratio and sample's porosity for various PTM porosities. For comparison, the

. - . Y
curves corresponding to the conditions of free up-setling, pressing in a rigid die (= =0)
22

. . . e
and isostatic pressing (—— = 1) are shown too.
e

2
The data in Fig. 2 indicates that, for high PTM porosities, the porous material deformation
mode under QIP can be closer to the conditions of free-upsetting rather than to the isostalic
pressing ones.
Mostly, the radial-axial strain rate ratio, for 0, > 0.5, is in beltween the curves

corresponding to pressing in a rigid die and free up-setting. This fact testifies the intensive



shape change under QIP which is the distinctive feature of this process in comparison with
the conventional containerless isostatic pressing.

3. Numerical analysis by the finite element method of shape distortion
under qip

3.1. Numerical procedure

For the investigation of the shape distortion phenomenon under quasi-isostatic pressing,
the boundary-value problem of pressing a cylindrical porous body in a rigid die filled by
PTM (Fig. 1) is formulated. Matenial of PTM is assumed to be pure elastic, sample's
material is rigid-plastic. The constitutive relationships for the sample's malerial corrcspond
to Eq. | whenn=0.

The boundary conditions are represented by the flow velocities: at the upper punch axial
velocities coincide with the punch's velocity; at the bottom of the die axial velocities are
equal 1o zero. At the lateral walls of the die, radial velocities are equal to zero. Friction of
PTM at the die and punch surfaces is neglected.

At the first stage, the problem based on assumption of linear-viscous properties of sample's
material is solved. Then using some special iteration scheme [8] the solution is obtained in
the framework of rigid-plastic rheology.

The initial porosity of PTM is assumed to be 0.65, the initial sample's porosity is 0.4.

3.2. Calculation results

The calculations show (Fig. 2a, 2b) that the ratio between constitutive parameters (Young
modulus and yield limit) of PTM and sample influences the shape distortion (whereas the
ratio between PTM and sample porosities effects the aspect ratio evolution). The influence
of the ratio between PTM and sample porosities upon the shape distortion is less
significant.

Under QIP of a sample with the high yield limit (for the porous body skeleton), e.g
"E/1, <50, where E is a Young modulus of the PTM material and <, is the sample’s
skeleton yield limit, the porous body keeps the shape close to cylindrical (Fig. 2a).

If the sample has a lower yield limit, e.g. E/t, > 500, its lateral surface takes a concave
shape (Fig. 2b).

It should be noted that porous bodies undergo similar shape distortions under isostatic
pressing in a container [9,10].

The indicated peculiarities of the shape change under QIP can be explained in the following
way. For the lower sample yield limit, the resistance of the volume regions, where sample.
material is located, is lower than the resistance of the adjacent PTM. Therefore, PTM flows
in the direction of smaller resistance, resulting the corresponding shape distortions. For the
higher sample yield limit, the resistance of sample material is comparable to that of the
adjacent PTM, therefore there are no dominant zones of the deformation flow and the
sample keeps its cylindricity.

The investigation of the shape distortion factor requires usage of some model low-resistant
material which can undergo considerable configuration changes under QIP. In such a way,
the qualitative picture of this phenomenon can be betler described. For this purpose, two
kinds of foams were chosen as a model material. In the experiments, QIP of the Modulan
and polyethylene foam was carried out.

The graphite powder transmitting medium was used in the experiments.

The polyethylene and Modulan foam samples were surrounded by graphite pressure
transmitting medium and compacted.

The polyethylene foam cylindrical samples were subjected to a 5 kN load in the direction
parallel (Fig. 3a)) and perpendicular (Fig. 3b)) to the sample axis.

The Modulan foam cylindrical sample was subjected to a 5 kN axial load (Fig. 3c)) and the
Modulan foam prismatic sample was subjected to a 9.5 kN axial load during QlP (Fig.
3d)).
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Fig. 2a. Calculation resulis for QIP of the porous sample Fig. 2b. Calculation results for QIP of the porous sample

wih E /1, < 50; with E/ 14 > 500,

4. Qualitative experimental analysis of the shape distortion under qip

a.b cd
Fig. 3. Initial and final shape of the foam samples subjected 10 QIP
a. - polyethylene sample subjecied 10 2 § kN load in the direction parallel 1o the sample axis;
b. - polycthylene sample subjected 10 a 5 kN load in the direction perpendicular 10 the sample axis;
¢. - Modulan foam ¢y lindrical sample subjecied 10 a 5 kN axial load during QIP;
d. - Modulan foam prismatic sample subjecied 1o a 9.5 kN axial load during QIP.




The qualitative results of the experiments on QIPing foams confirn the results obtained by
the finite element calculations.

The surface of the polyethylene foam, having a lower resistance, takes a concave shape
after QIP (Fig. 3). A comparison of the results in Fig. 2a) and 2b) indicates that this effect
does not depend on the macroscopic orentation of a sample. This confirms an idea
formulated on the basis of the finite-element calculations: the main factor detennining shape
distortion under QIP is the relationship between constitutive properties of PTM particles
and the porous sample skeleton.

The Modulan foam, having a higher resistance, keeps its cylindrical shape (Fig. 3d).

In the case of the prismatic shape, the slight concavity of the upper and lower end faces is
compensated by the convexity of the lateral surface (Fig. 3c).

Conclusions

I. A mathematical model of the quasi-isostatic pressing (QIP) is developed. :
2. The modcl predicts an essenlial shape change under QIP for large porosities of the
pressure transmitting medium (PTM).

3. It is shown that, for most cases, the QIP deformation mode has an intenmediate position
between the deformation modes of pressing in rigid dies and free up-setling.

4. The results of the finite-clement modeling of quasi-isostatic pressing are confirmed
qualitatively by the model experiments on QIPing foam specimens.

5. The main factor detenmining shape distortion under QIP is the relationship between
constitutive properties of PTM particles and the porous sample skeleton. The influence of
the ratio between PTM and sample porosities upon the shape distortion is less si ghificant.
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